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10.2  HUYGENS PRINCIPLE

We would first define a wavefront: when we drop a small stone on a calm
pool of water, waves spread out from the point of impact. Every point on
the surface starts oscillating with time. At any instant, a photograph of
the surface would show circular rings on which the disturbance is
maximum. Clearly, all points on such a circle are oscillating in phase
because they are at the same distance from the source. Such a locus of
points, which oscillate in phase is called a wavefront ; thus a wavefront
is defined as a surface of constant phase. The speed with which the
wavefront moves outwards from the source is called the speed of the
wave. The energy of the wave travels in a direction perpendicular to the
wavefront.

If we have a point source emitting waves uniformly in all directions,
then the locus of points which have the same amplitude and vibrate in
the same phase are spheres and we have what is known as a spherical
wave as shown in Fig. 10.1(a). At a large distance from the source, a

DOES LIGHT TRAVEL IN A STRAIGHT LINE?

Light travels in a straight line in Class VI; it does not do so in Class XII and beyond! Surprised,
aren’t you?

In school, you are shown an experiment in which you take three cardboards with
pinholes in them, place a candle on one side and look from the other side. If the flame of the
candle and the three pinholes are in a straight line, you can see the candle. Even if one of
them is displaced a little, you cannot see the candle. This proves, so your teacher says,
that light travels in a straight line.

In the present book, there are two consecutive chapters, one on ray optics and the other
on wave optics. Ray optics is based on rectilinear propagation of light, and deals with
mirrors, lenses, reflection, refraction, etc. Then you come to the chapter on wave optics,
and you are told that light travels as a wave, that it can bend around objects, it can diffract
and interfere, etc.

In optical region, light has a wavelength of about half a micrometre. If it encounters an
obstacle of about this size, it can bend around it and can be seen on the other side. Thus a
micrometre size obstacle will not be able to stop a light ray. If the obstacle is much larger,
however, light will not be able to bend to that extent, and will not be seen on the other side.

This is a property of a wave in general, and can be seen in sound waves too. The sound
wave of our speech has a wavelength of about 50cm to 1 m. If it meets an obstacle of the
size of a few metres, it bends around it and reaches points behind the obstacle. But when it
comes across a larger obstacle of a few hundred metres, such as a hillock, most of it is
reflected and is heard as an echo.

Then what about the primary school experiment? What happens there is that when we
move any cardboard, the displacement is of the order of a few millimetres, which is much
larger than the wavelength of light. Hence the candle cannot be seen. If we are able to move
one of the cardboards by a micrometer or less, light will be able to diffract, and the candle
will still be seen.

One could add to the first sentence in this box: It learns how to bend as it grows up!

FIGURE 10.1 (a) A
diverging spherical

wave emanating from
a point source. The

wavefronts are
spherical.
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oscillators, which take up the frequency of the external agency (light)
causing forced oscillations. The frequency of light emitted by a charged
oscillator equals its frequency of oscillation. Thus, the frequency of
scattered light equals the frequency of incident light.

(b) No. Energy carried by a wave depends on the amplitude of the
wave, not on the speed of wave propagation.

(c) For a given frequency, intensity of light in the photon picture is
determined by the number of photons crossing an unit area per
unit time.

10.4  COHERENT AND INCOHERENT ADDITION OF WAVES

In this section we will discuss the interference pattern produced by
the superposition of two waves. You may recall that we had discussed
the superposition principle in Chapter 15 of your Class XI textbook.
Indeed the entire field of interference is based on the superposition
principle according to which at a particular point in the medium, the
resultant displacement produced by a number of waves is the vector
sum of the displacements produced by each of the waves.

Consider two needles S1 and S2 moving periodically up and down
in an identical fashion in a trough of water [Fig. 10.8(a)]. They produce
two water waves, and at a particular point, the phase difference between
the displacements produced by each of the waves does not change
with time; when this happens the two sources are said to be coherent.
Figure 10.8(b) shows the position of crests (solid circles) and troughs
(dashed circles) at a given instant of time. Consider a point P for which

S1 P = S2 P

Since the distances S1 P and S2 P are equal, waves from S1 and S2
will take the same time to travel to the point P and waves that emanate
from S1 and S2 in phase will also arrive, at the point P, in phase.

Thus, if the displacement produced by the source S1 at the point P
is given by

y1 = a cos ,t

then, the displacement produced by the source S2 (at the point P) will
also be given by

y2 = a cos ,t

Thus, the resultant of displacement at P would be given by

y = y1 + y2 = 2 a cos ,t

Since the intensity is the proportional to the square of the
amplitude, the resultant intensity will be given by

I = 4 I0
where I0 represents the intensity produced by each one of the individual
sources; I0 is proportional to a2. In fact at any point on the perpendicular
bisector of S1S2, the intensity will be 4I0. The two sources are said to

(a)

(b)

FIGURE 10.8 (a) Two
needles oscillating in

phase in water
represent two coherent

sources.
(b) The pattern of

displacement of water
molecules at an

instant on the surface
of water showing nodal

N (no displacement)
and antinodal A

(maximum
displacement) lines.
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interfere constructively and we have what is referred to as constructive
interference. We next consider a point Q [Fig. 10.9(a)]
for which

S2Q –S1Q = 2#

The waves emanating from S1 will arrive exactly two cycles earlier
than the waves from S2 and will again be in phase [Fig. 10.9(a)]. Thus, if
the displacement produced by  S1  is given by

y1 = a cos ,t

then the displacement produced by  S2  will be given by

y2 = a cos (,t – 4�)  =  a cos ,t

where we have used the fact that a path difference of 2# corresponds to a
phase difference of 4�. The two displacements are once again in phase
and the intensity will again be 4 I0 giving rise to constructive interference.
In the above analysis we have assumed that the distances S1Q and S2Q
are much greater than d (which represents the distance between S1 and
S2) so that although S1Q and S2Q are not equal, the amplitudes of the
displacement produced by each wave are very nearly the same.

We next consider a point R [Fig. 10.9(b)] for which

S2R – S1R = –2.5#
The waves emanating from S1 will arrive exactly two and a half cycles
later than the waves from S2  [Fig. 10.10(b)]. Thus if the displacement
produced by  S1  is given by

y1 = a cos ,t

then the displacement produced by  S2  will be given by

y2 = a cos (,t + 5�)  = – a cos ,t

where we have used the fact that a path difference of 2.5# corresponds to
a phase difference of 5�. The two displacements are now out of phase
and the two displacements will cancel out to give zero intensity. This is
referred to as destructive interference.

To summarise: If we have two coherent sources S1 and S2 vibrating
in phase, then for an arbitrary point P whenever the path difference,

S1P  ~�S2P =  n#     (n = 0, 1, 2, 3,...) (10.10)

we will have constructive interference and the resultant intensity will be
4I0; the sign ~�between  S1P and S2 P represents the difference between
S1P and S2 P. On the other hand, if the point P is such that the path
difference,

S1P  ~�S2P = (n+
1
2

) #     (n = 0, 1, 2, 3, ...) (10.11)

we will have destructive interference and the resultant intensity will be
zero. Now, for any other arbitrary point G (Fig. 10.10) let the phase
difference between the two displacements be -. Thus, if the displacement
produced by S1 is given by

y1 = a cos ,t

FIGURE 10.9
(a) Constructive
interference at a

point Q for which the
path difference is 2#.

(b) Destructive
interference at a

point R for which the
path difference is

2.5 # .

FIGURE 10.10 Locus
of points for which

S1P – S2P is equal to
zero, .#, . 2#, . 3# .
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then, the displacement produced by S2 would be

y2 = a cos (,t + - )

and the resultant displacement will be given by

y = y1 + y2

   =  a [cos ,t + cos (,t +- �]

= 2 a cos (-/2) cos (,t + -/2)

The amplitude of the resultant displacement is 2a cos (-/2) and
therefore the intensity at that point will be

I = 4 I0 cos2��-/2) (10.12)

If - = 0, . 2 �, . 4��,… which corresponds to the condition given by
Eq. (10.10) we will have constructive interference leading to maximum
intensity. On the other hand, if - = . �, . 3�, . 5� … [which corresponds to
the condition given by Eq. (10.11)] we will have destructive interference
leading to zero intensity.

Now if the two sources are coherent (i.e., if the two needles are going
up and down regularly) then the phase difference - at any point will not
change with time and we will have a stable interference pattern; i.e., the
positions of maxima and minima will not change with time. However, if
the two needles do not maintain a constant phase difference, then the
interference pattern will also change with time and, if the phase difference
changes very rapidly with time, the positions of maxima and minima will
also vary rapidly with time and we will see a “time-averaged” intensity
distribution. When this happens, we will observe an average intensity
that will be given by


 �2

0
4 cos /2I I �� /� � / (10.13)

where angular brackets represent time averaging. Indeed it is shown in
Section 7.2 that if -(t ) varies randomly with time, the time-averaged
quantity < cos2 (-/2) > will be 1/2. This is also intuitively obvious because
the function cos2 (-/2)  will randomly vary between 0 and 1 and the
average value will be 1/2. The resultant intensity will be given by

I = 2 I0 (10.14)

at all points.
When the phase difference between the two vibrating sources changes

rapidly with time, we say that the two sources are incoherent and when
this happens the intensities just add up. This is indeed what happens
when two separate light sources illuminate a wall.

10.5 INTERFERENCE OF LIGHT WAVES AND YOUNG’S
EXPERIMENT

We will now discuss interference using light waves. If we use two sodium
lamps illuminating two pinholes (Fig. 10.11) we will not observe any
interference fringes. This is because of the fact that the light wave emitted
from an ordinary source (like a sodium lamp) undergoes abrupt phase

R
ip

p
le

 T
an

k 
e
xp

e
ri

m
e
n

ts
 o

n
 w

av
e
 i

n
te

rf
e
re

n
ce

h
tt
p
:/
/w

w
w

.c
o
lo

ra
d
o
.e

d
u
/p

h
y
si

c
s/

2
0
0
0
/a

p
p
le

ts
/f
o
u
ri

e
r.

h
tm

l



363

Wave Optics

changes in times of the order of 10–10 seconds. Thus
the light waves coming out from two independent
sources of light will not have any fixed phase
relationship and would be incoherent, when this
happens, as discussed in the previous section, the
intensities on the screen will add up.

The British physicist Thomas Young used an
ingenious technique to “lock” the phases of the waves
emanating from S1 and S2. He made two pinholes S1
and S2 (very close to each other) on an opaque screen
[Fig. 10.12(a)]. These were illuminated by another
pinholes that was in turn, lit by a bright source. Light
waves spread out from S and fall on both S1 and S2.
S1 and S2 then behave like two coherent sources
because light waves coming out from S1 and S2 are derived from the
same original source and any abrupt phase change in S will manifest in
exactly similar phase changes in the light coming out from S1 and S2.
Thus, the two sources S1 and S2 will be locked in phase; i.e., they will be
coherent like the two vibrating needle in our water wave example
[Fig. 10.8(a)].

FIGURE 10.11 If two sodium
lamps illuminate two pinholes

S1 and S2, the intensities will add
up and no interference fringes will

be observed on the screen.

Thus spherical waves emanating from S1 and S2 will produce
interference fringes on the screen GG	, as shown in Fig. 10.12(b). The
positions of maximum and minimum intensities can be calculated by
using the analysis given in Section 10.4 where we had shown that for an
arbitrary point P on the line GG	 [Fig. 10.12(b)] to correspond to a
maximum, we must have

S2P – S1P = n#;    n = 0, 1, 2 ... (10.15)

Now,

(S2P )2 – (S1P )2 =  

2
2 –

2
d

D x
� �� �
 
� �� �� �� ��  

2
2 –

2
d

D x
� �� �
� �� �� �� ��  

= 2x d

(a) (b)

FIGURE 10.12 Young’s arrangement to produce interference pattern.
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where S1S2 = d and OP = x .  Thus

S2P – S1P = 
2 1

2
S P+S P

xd
(10.16)

If x, d<<D then negligible error will be introduced if
S2P + S1P (in the denominator) is replaced by 2D. For
example, for d = 0.1 cm, D = 100 cm, OP = 1 cm (which
correspond to typical values for an interference
experiment using light waves), we have

S2P + S1P  =   [(100)2 + (1.05)2]½ + [(100)2 + (0.95)2]½

    	200.01 cm

Thus if we replace S2P + S1P by 2 D, the error involved is
about 0.005%. In this approximation, Eq. (10.16)
becomes

S2P – S1P � (10.17)

Hence we will have constructive interference resulting in
a bright region when

x = xn = 
n D

d

�
; n = 0, � 1, � 2, ... (10.18)

On the other hand, we will have a dark region near

x = xn = (n+ ) ; 0, 1, 2
D

n
d

�
� � � (10.19)

Thus dark and bright bands appear on the screen, as shown in
Fig. 10.13. Such bands are called fringes. Equations (10.18) and (10.19)
show that dark and bright fringes are equally spaced and the distance
between two consecutive bright and dark fringes is given by

� = xn+1 –xn

or  � = 
D

d

�
(10.20)

which is the expression for the fringe width. Obviously, the central point
O (in Fig. 10.12) will be bright because S1O = S2O and it will correspond
to n = 0. If we consider the line perpendicular to the plane of the paper
and passing through O [i.e., along the y-axis] then all points on this line
will be equidistant from S1 and S2 and we will have a bright central fringe
which is a straight line as shown in Fig. 10.13.  In order to determine the
shape of the interference pattern on the screen we note that a particular
fringe would correspond to the locus of points with a constant value of
S2P – S1P. Whenever this constant  is an integral multiple of #, the fringe
will be bright and whenever it is an odd integral multiple of #/2 it will be
a dark fringe. Now, the locus of the point P lying in the x-y plane such
that S2P – S1P (= ���is a constant, is a hyperbola. Thus the fringe pattern
will strictly be a hyperbola; however, if the distance D is very large compared
to the fringe width, the fringes will be very nearly straight lines as shown
in Fig. 10.13.

Thomas Young
(1773 – 1829) English
physicist, physician and
Egyptologist. Young worked
on a wide variety of
scientific problems, ranging
from the structure of the eye
and the mechanism of
vision to the decipherment
of the Rosetta stone. He
revived the wave theory of
light and recognised that
interference phenomena
provide proof of the wave
properties of light.
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In the double-slit experiment shown in Fig. 10.12, we have taken the
source hole S on the perpendicular bisector of the two slits, which is
shown as the line SO. What happens if the source S is slightly away from
the perpendicular bisector. Consider that the source is moved to some
new point S	 and suppose that Q is the mid-point of S1 and S2. If the
angle S	QS is -, then the central bright fringe occurs at an angle –-, on
the other side. Thus, if the source S is on the perpendicular bisector,
then the central fringe occurs at O, also on the perpendicular bisector. If
S is shifted by an angle - to point S	, then the central fringe appears at a
point O	 at an angle –-, which means that it is shifted by the same angle
on the other side of the bisector. This also means that the source S	, the
mid-point Q and the point O	 of the central fringe are in a straight line.

We end this section by quoting from the Nobel lecture of Dennis Gabor*

The wave nature of light was demonstrated convincingly for the
first time in 1801 by Thomas Young by a wonderfully simple
experiment. He let a ray of sunlight into a dark room, placed a
dark screen in front of it, pierced with two small pinholes, and
beyond this, at some distance, a white screen. He then saw two
darkish lines at both sides of a bright line, which gave him
sufficient encouragement to repeat the experiment, this time with
spirit flame as light source, with a little salt in it to produce the
bright yellow sodium light. This time he saw a number of dark
lines, regularly spaced; the first clear proof that light added to
light can produce darkness. This phenomenon is called

FIGURE 10.13 Computer generated fringe pattern produced by two point source S1 and S2 on the
screen GG	 (Fig. 10.12); (a) and (b) correspond to d = 0.005 mm and 0.025 mm, respectively (both

figures correspond to D = 5 cm and # = 5 × 10–5 cm.) (Adopted from OPTICS by A. Ghatak, Tata
McGraw Hill Publishing Co. Ltd., New Delhi, 2000.)

* Dennis Gabor received the 1971 Nobel Prize in Physics for discovering the
principles of holography.
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interference. Thomas Young had expected it because he believed
in the wave theory of light.

We should mention here that the fringes are straight lines although
S1 and S2 are point sources. If we had slits instead of the point sources
(Fig. 10.14), each pair of points would have produced straight line fringes
resulting in straight line fringes with increased intensities.

Example 10.3 Two slits are made one millimetre apart and the screen
is placed one metre away. What is the fringe separation when blue-
green light of wavelength 500 nm is used?

Solution Fringe spacing =
–7

–3

1 5 10
m

1 10
D

d

� � �
�

�

      = 5 × 10–4 m = 0.5 mm

Example 10.4 What is the effect on the interference fringes in a
Young’s double-slit experiment due to each of the following operations:

(a) the screen is moved away from the plane of the slits;
(b) the (monochromatic) source is replaced by another

(monochromatic) source of shorter wavelength;
(c) the separation between the two slits is increased;
(d) the source slit is moved closer to the double-slit plane;
(e) the width of the source slit is increased;
(f ) the monochromatic source is replaced by a source of white

light?

FIGURE 10.14 Photograph and the graph of the intensity
distribution in Young’s double-slit experiment.
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( In each operation, take all parameters, other than the one specified,
to remain unchanged.)

Solution
(a) Angular separation of the fringes remains constant

(= #/d). The actual   separation of the fringes increases in
proportion to the distance of the screen from the plane of the
two slits.

(b) The separation of the fringes (and also angular separation)
decreases. See, however, the condition mentioned in (d) below.

(c) The separation of the fringes (and also angular separation)
decreases. See, however, the condition mentioned in (d) below.

(d) Let s be the size of the source and S its distance from the plane of
the two slits. For interference fringes to be seen, the condition
s/S < #/d should be satisfied; otherwise, interference patterns
produced by different parts of the source overlap and no fringes
are seen. Thus, as S decreases (i.e., the source slit is brought
closer), the interference pattern gets less and less sharp, and
when the source is brought too close for this condition to be valid,
the fringes disappear. Till this happens, the fringe separation
remains fixed.

(e) Same as in (d). As the source slit width increases, fringe pattern
gets less and less sharp. When the source slit is so wide that the
condition s/S &� #/d is not satisfied, the interference pattern
disappears.

(f ) The interference patterns due to different component colours of
white light overlap (incoherently). The central bright fringes for
different colours are at the same position. Therefore, the central
fringe is white. For a point P for which S2P –S1P = #b/2, where #b

(� 4000 Å) represents the wavelength for the blue colour, the blue
component will be absent and the fringe will appear red in colour.
Slightly farther away where S2Q–S1Q = #b = #r/2 where #r (� 8000 Å)
is the wavelength for the red colour, the fringe will be predominantly
blue.

Thus, the fringe closest on either side of the central white fringe
is red and the farthest will appear blue. After a few fringes, no
clear fringe pattern is seen.

10.6  DIFFRACTION

If we look clearly at the shadow cast by an opaque object, close to the
region of geometrical shadow, there are alternate dark and bright regions
just like in interference. This happens due to the phenomenon of
diffraction. Diffraction is a general characteristic exhibited by all types of
waves, be it sound waves, light waves, water waves or matter waves. Since
the wavelength of light is much smaller than the dimensions of most
obstacles; we do not encounter diffraction effects of light in everyday
observations. However, the finite resolution of our eye or of optical


